Abnormal Behavior in a Chromosome- Engineered Mouse Model for Human 15q11-13 Duplication Seen in Autism
نویسندگان
چکیده
Substantial evidence suggests that chromosomal abnormalities contribute to the risk of autism. The duplication of human chromosome 15q11-13 is known to be the most frequent cytogenetic abnormality in autism. We have modeled this genetic change in mice by using chromosome engineering to generate a 6.3 Mb duplication of the conserved linkage group on mouse chromosome 7. Mice with a paternal duplication display poor social interaction, behavioral inflexibility, abnormal ultrasonic vocalizations, and correlates of anxiety. An increased MBII52 snoRNA within the duplicated region, affecting the serotonin 2c receptor (5-HT2cR), correlates with altered intracellular Ca(2+) responses elicited by a 5-HT2cR agonist in neurons of mice with a paternal duplication. This chromosome-engineered mouse model for autism seems to replicate various aspects of human autistic phenotypes and validates the relevance of the human chromosome abnormality. This model will facilitate forward genetics of developmental brain disorders and serve as an invaluable tool for therapeutic development.
منابع مشابه
Altered Microglia in the Amygdala Are Involved in Anxiety-related Behaviors of a Copy Number Variation Mouse Model of Autism.
BACKGROUND AND PURPOSE Autism spectrum disorder (ASD) is a neurodevelopmental disorder with a strong genetic basis. Although anxiety is a common major psychiatric condition in ASD, the underlying mechanisms of the anxiety are poorly understood. In individuals with ASD, evidence indicates a structural abnormality in the amygdala, a key component involved in anxiety and social behavior. Microglia...
متن کاملChromosome 15q11-13 duplication syndrome brain reveals epigenetic alterations in gene expression not predicted from copy number.
BACKGROUND Chromosome 15q11-13 contains a cluster of imprinted genes essential for normal mammalian neurodevelopment. Deficiencies in paternal or maternal 15q11-13 alleles result in Prader-Willi or Angelman syndromes, respectively, and maternal duplications lead to a distinct condition that often includes autism. Overexpression of maternally expressed imprinted genes is predicted to cause 15q11...
متن کاملNeuron-specific impairment of inter-chromosomal pairing and transcription in a novel model of human 15q-duplication syndrome.
Although the etiology of autism remains largely unknown, cytogenetic and genetic studies have implicated maternal copy number gains of 15q11-q13 in 1-3% of autism cases. In order to understand how maternal 15q duplication leads to dysregulation of gene expression and altered chromatin interactions, we used microcell-mediated chromosome transfer to generate a novel maternal 15q duplication model...
متن کامل15q11-13 GABAA receptor genes are normally biallelically expressed in brain yet are subject to epigenetic dysregulation in autism-spectrum disorders.
Human chromosome 15q11-13 is a complex locus containing imprinted genes as well as a cluster of three GABA(A) receptor subunit (GABR) genes-GABRB3, GABRA5 and GABRG3. Deletion or duplication of 15q11-13 GABR genes occurs in multiple human neurodevelopmental disorders including Prader-Willi syndrome (PWS), Angelman syndrome (AS) and autism. GABRB3 protein expression is also reduced in Rett syndr...
متن کاملCerebellar Plasticity and Motor Learning Deficits in a Copy Number Variation Mouse Model of Autism
A common feature of autism spectrum disorder (ASD) is the impairment of motor control and learning, occurring in a majority of children with autism, consistent with perturbation in cerebellar function. Here we report alterations in motor behaviour and cerebellar synaptic plasticity in a mouse model (patDp/+) for the human 15q11-13 duplication, one of the most frequently observed genetic aberrat...
متن کامل